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Motion of ‘hopping’ particles in a constant force field 

Jean-Pierre Gallinar? and Daniel C Mattis 
Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA 

Received 21 November 1984 

Abstract. We study the eigenstates of electrons or holes constrained to ‘hop’ from site to 
neighbouring site on a lattice (‘Wannier particles’), when they are subjected to strong fields 
of constant force. Principal applications are to inversion layers at the surface of semiconduc- 
tors. It is seen that the exact solutions differ considerably from those found in the continuum 
‘eff ective-mass’ approximation. We also analyse the eigenstates of two Wannier particles 
when the only force is their mutual attraction of constant force. 

1. Introduction 

Recently, Gallinar (1984) obtained the formal solution for the eigenvalue spectrum of 
Schrodinger’s equation for a particle ‘hopping’ on a Bethe lattice (henceforth to be 
denoted, for brevity, a ‘Wannier particle’) under the influence of an arbitrary potential 
of spherical symmetry, of which the Coulomb problem is a special case. In the present 
work we present the explicit solution for Wannier particles subject to linear or piecewise 
linear potentials. Applications include electrons or holes in inversion layers near the 
surface of a semiconductor, and the variously defined particles of lattice gauge theories 
(see review by Kogut 1979). 

In the case of electrons or holes in solids, particles in Wannier states about a given 
site have a known matrix element for transfer to neighbouring sites, one which can 
be computed with knowledge of the band structure. As particles in Bloch states within 
each band are commonly denoted ‘Bloch particles’, it is natural that we denote electrons 
or holes in the localised representation of Wannier states of a given band, ‘Wannier 
particles’. We shall make the further approximation, that the ‘hopping’ matrix elements 
connect only nearest-neighbour sites in ‘cubium’ (the linear chain, simple quadratic, 
or simple cubic lattices). In our calculations, within the limitations of this idealised 
model, we shall strive for exact results, to see in what way the solutions of the discrete 
models differ from the ‘continuum’ or ‘effective mass’ approximations. If the surface 
fields restrict particles to within one or two layers from the surface of a semiconductor, 
it seems absurd to calculate their properties using a continuum (i.e. long-wavelength) 
approximation, yet that is precisely what one has been forced to do in the absence of 
solutions of the type we shall obtain in these pages. 

Assuming we can factor the wavefunctions in the direction perpendicular to the 
surface (x)  from the functions relating to motion within planes parallel to the surface 
( y ,  z ) ,  and that the potential is applied perpendicular to the surface, the relevant part 
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of the three-dimensional problem reduces to that of a particle on a linear chain, with 
x discrete (x = nu, a = distance between planes and n =integer). The solutions odd 
in x automatically satisfy the ‘hard wall’ boundary condition at n = 0. For completeness, 
however, we also give the even solutions. (Both parities enter into the problem of two 
particles subject to a mutual attraction of constant force.) 

Such one-dimensional problems can generally be solved by means of a continued 
fraction representation of the relevant Green functions (Hubbard 1979). This powerful 
method enables one to obtain the eigenvalue spectrum of an arbitrary Hamiltonian of 
the form, 

H =  -1 c n { l n + l ) ( n l + l n - l ) ( n l } + l  Unln)(nl. (1) 

Indeed, we have used the Green function continued-fraction solution of the linear- 
potential problem to verify the essential conclusions which we shall now deriue by simpler 
means. For, in the special case of a linear potential and an homogeneous band structure 
(C, = constant), it happens that judicious comparison of Schrodinger’s equation with 
the well known difference equations of Bessel functions yields the desired solutions, 
without further ado. It is rare to find instances in the physics of discrete lattices where 
a non-trivial problem receives such a simple, direct, and complete solution, and we 
present this research for its intrinsic interest, as well as for its applications to semicon- 
ductor physics. (Indeed, aside from two other examples, ( 1 )  the aforementioned lattice 
Coulomb problem, and ( 2 )  the parabolic potential U = 1/2Kn2 (for which a suitable 
version of Mathieu’s equation yields the complete solutions) our problem may provide 
a uniquely exactly soluble example in lattice physics.) 

2. Eigenvalues and eigenfunctions 

With the choices 

C, = C(constant) and U,, = (9= qEu) ( 2 )  

the Hamiltonian in (1) describes a particle hopping with constant matrix element C 
from site to site on a linear chain, in a potential proportional to the applied field E, 
charge q, and site index n. It must be assumed that the product q E > 0 ,  or else the 
states of lowest energy will be at 03. The Hamiltonian is explicitly even about n = 0, 
thus its eigenstates have even or odd parity. One of the effects of placing an infinitely 
high barrier at the surface at n = 0 is to single out the odd parity eigenstates of our 
Hamiltonian, for they spontaneously satisfy the boundary condition V( n = 0) = 0. The 
potential U, at n > 0 serves to confine carriers to the neighbourhood of the surface. 
All the states we find are bound states. For completeness, we also consider the euen 
parity bound states (which, however, satisfy not the aforementioned boundary condi- 
tion, but another which we shall shortly derive). 

Consider an arbitrary, normalised eigenstate in the form, 

V==CAnln),  with11A,12=1. (3) 

The Schrodinger equation HV = EV will yield an equation for the coefficients, which 
with the choices ( 2 )  takes on the aspect: 

A,.+l+A,-, = (%Inl-E)(C-’)A, , .  (4) 
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For the solution to be well behaved, the coefficients must vanish sufficiently fast at 
n = 00. Both types of Bessel functions, J,  (first kind) and Y,, (second kind), satisfy 
difference equations similar to (4). Credit for first recognising this is due Merrifield 
(1963). This author, however, did not appreciate the importance of the boundary 
conditions at n = 0 (and therefore obtained unptiysical results). Of the two types of 
Bessel functions, Y,, diverges at large In1 and is thus unsuited to the present applications, 
while J,  vanishes asymptotically sufficiently fast to be normalised and is thus an 
excellent candidate for identifying with A,. The appropriate equation for Bessel’s 
functions (Abramowitz and Stegun 1965) is 

J , * , ( Z )  +J”-l(z) = (2V/Z)J”(Z). ( 5 )  

Thus, comparison of (5) with (4) at all n # 0 yields 

An = DJu(Z), (6) 

where D is the normalisation constant. Defining the energy eigenvalue in dimensionless 
units, w = E / $ ,  and the parameter Z = 2C/$, we observe that the identification (6) 
requires 

Y = In1 - w. (7 )  

We now distinguish the two cases. For odd parity, A. = 0 requires 

J - , (Z )  = 0 odd parity. (8) 

The solution of (8) yields all the eigenvalues of the inversion-layer problem (where 
the surface barrier at n = 0 forces all A, for n S 0 to vanish). Fixing Z, the solutions 
are found as functions of w (in the range a3 > w > -2C/9).  

We now turn to the even parity states. The requirement that equations (4) and (5) 
agree at n = 0, with A-, = A,, easily translates into J- l -w,(Z)  = J1-,,,(Z). Hence by 
another well known identity of Bessel functions (Abramowitz and Stegun 1965), i.e. 

J,+i(Z) - J U - l ( Z )  = 2(d/dZ)J,(Z) ( 9 )  

we obtain a more ‘transparent’ boundary condition: 

(d/dZ)J- , (Z)  = 0 even parity (10) 

to be evaluated at 2 = 2 C / 9  Those values of w in the range w > - 2 C / 9  for which 
(10) is obeyed will constitute the even-parity eigenvalue spectrum of H. 

In figure 1 we show the lowest two even levels ( n  = 0 , l )  and odd levels (labelled 
n’ = 1,2) as a function of 9, and some comparison with the continuum approximation. 
(The continuum theory is solved in the appendix.) Figure 2 provides a microscopic 
examination of the strong-coupling region of figure 1. We see that while the individual 
energy levels of the Wannier particles maintain their identities and separations, the 
curves corresponding to the continuum theory all merge at the origin. 

Possibly, either dielectric breakdown, or tunnelling from one conduction band to 
the next, will characterise the strong-coupling regime physically. However, these are 
phenomena which cannot be examined within the framework of the Hamiltonian (1). 
What is clear, is that continuum theory breaks down in strong electric fields, and the 
discreteness of the lattice musr then be taken into account. 



2586 J-P Gallinar and D C Mattis 

4 

Figure 1. The broken curves are a plot of energy w + 2 C / 9  (vertical axis) against C / S  
(horizontal axis), where C = 1 bandwidth and 9 measures the strength of the force field. 
The even panty levels are denoted n, the odd panty levels n'. The n = 0, 1 even-parity 
energy levels in the continuum 'effective-mass' approximation are also shown for com- 
parison. (The n' = 1 , 2  continuum curves are omitted for visual convenience, as they almost 
coincide with the exact solutions on the scale of this graph.) 

3. Two-particle problem 

With the one-body problem reduced to quadrature, we now consider a two-body 
problem defined as follows: one particle hops with matrix elements C between nearest- 
neighbour sites, while the second hops with matrix elements V. This simulates an 
electron in the conduction band (C)  and a hole in the valence band (V) ,  which are 
now assumed to attract with a constant force. In one dimension, this is equivalent to 
a potential U"-,,, = 9 / n  - mi, where n is the coordinate of the C particle, and m that 
of the V particle. The energies are the eigenvalues of an Hamiltonian 

~ = - C ( C [ I n + 1 , m ) ( n , m l + l n - l , m ) ( n ,  ml] 

+ Wn, m + l ) ( n ,  ml+ln, m - N n ,  mll)+C Un-,,,In, m)(n,  4. ( 1 1 )  

If either C or V is zero, we recover the one-particle solutions explicitly. The same 
can be seen to be true when both are non-zero (after some manipulation). Denoting 
the two-particle eigenstates 9, with 

(12) 9 =c W n ,  m)ln, m),  
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Figure 2. Enlargement of figure 1 in the strong-coupling region, showing the two lowest 
even- and odd-parity levels in the discrete (broken curves) and in the continuum (full 
curves) theories. The discrepancies are obvious when the potential energy change per hop 
is comparable to the hopping matrix element (bandwidth parameter). 

we write B(n, m )  in the form 

B(n, m )  = {exp i[ika(n+ m ) + ( n  - m)4]}A(n - m )  (13) 

where k is the wavevector associated with centre-of-mass motion, while 4 is an as yet 
undetermined parameter. After simple algebra, we obtain the equation satisfied by 
A( PI: 

A ( p +  l ) + A ( p - l )  = ( s lPI -E)(e(k) ) - ’A(p)  (14) 

with e ( k )  a positive quantity given by 

e( k )  = [ V 2  + C2 + 2 VC cos( ka)]’” 

and 4 = 4 ( k )  chosen as follows: 

+ ( k )  =tan-’{[(C- V ) / ( C +  V ) ]  tan(ka/2)}. 

Apart from multiplicative normalisation constants, the even and odd parity solutions 
of Schrodinger’s equation are 

A(P) =JIp,-dZ) even ( 1 7 ~ )  

subject to the respective boundary (i.e., eigenvalue) conditions, 

(d/dZ)J- , (Z)  = 0 even (18a) 

J - , ( Z )  = 0 odd (18b) 

and 

evaluated at Z = 2e( k ) /  9. The resulting eigenvalues w = E / 9 determine the energies 
E. Figure 3 displays some of the solutions, for the special case V =  C. Each of the 
discrete one-particle states is now spread into a band, denoted E , ( k ) .  Because these 
bands become increasingly narrow as the quantum number n is increased, we can 
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expect that the ‘effective mass’ of the composite particle increases with quantum 
number, as shown in the appendix. Now, although the question of the dependence 
of mass on internal interactions has previously been solved in all generality, for an 
exciton subject to arbitrary central forces (Mattis and Gallinar 
problem at hand (where all the states are bound) does merit a 
in the appendix. 

1984),yet the particular 
separate analysis, given 

0 n12 n 
ka 

Figure 3. Plot of ( E , (  k )  t 4 C ) /  9 against crystal momentum !a for two identical ( V = C) 
particles bound by a mutual potential of constant force, for n = 0 and ti = 1 at different 
values of l / f =  C/%. The continuous curve corresponds to l / f=O.l  and is almost flat. 
The two broken curves are at 1/ f = 0.5, while the chain curve has l/f = 0.75. (Note that 
the ti = 1 band is narrower than n = 0, indicating that the total mass of the composite 
particle increases with quantum number-a trend proved in the appendix.) 
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Appendix 

We treat the continuum limit ( a + O  with C, V+m, such that Va2 and Ca2  are both 
finite). The eigenvalues of the resulting Schrodinger equation are straightforwardly 

E , ( k )  = ( 1 / 2 ) ( m , + m z ) - ’ h 2 k 2 + ~ , ( h 2 q 2 E 2 / 2 p ) 1 ’ 3  (AI)  
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where p is the reduced mass m 1 m 2 / m l  + m2, z, is the nth root of Ai(-z) = O  (odd) or 
Ai'(-zj = 0 (even), and Ai(z) is the well known Airy function (Watson 1944). We 
have made use of this in calculating the plotted curves. 

The calculation of the true effective mass of the 'Wannier exciton', M: f m l  + m2, 
is more involved. Here we shall give a mere summary of our extensive calculations, 
indicating that the exciton bands become narrower as their quantum number increases. 
We use a result (Watson 1944) for J,(z) = 0, i.e. 

2z lox K0(2z sinh t )  e-2v' d t  
d u  

where K o ( x )  is the modified Bessel function of zero order and second kind. The 
definition of MX is h 2 / d 2 E , (  k ) / d k 2 l k X o  and, after manipulations, it becomes: 

2h2(  V +  C)' loX Ko4( V +  C) sinh t 
M $  = exp(b,t) d t  

VCa 9 9 
where b, = 2[ E,(O) - 2( V +  C ) ] S  increases with E,(O).  As the latter diverges as n +=CO, 

so will M:. 
In the rest of this appendix, we show how to obtain the 'effective-mass' approxima- 

tion ( E M A )  for some of our results. We first show how to obtain (Al) .  As proved in 
the text, the odd spectrum for E , ( k )  is given by the roots of J-,(Z)=O, where 
Z = 2 e ( k ) / 9  and w = E,,/$, while the even spectrum is given by the roots of 
d / d Z j _ , ( Z )  = 0. For the sake of reference, we shall work with the odd spectrum 
condition. To compare with the continuum limit, we must add  the energy 2( V +  C )  
to E , ( k ) ,  as has also been done in figures 1-3. We expand e ( k )  to obtain 

The equation J-,(Z) = 0 then gives equivalently that 

with 
E,( k )  + 2 (  V +  C)a '  
9 S a 2  ' 

U = - -  

In the EMA limit, (A5) implies 

When a -f 0, we obtain from (A6) that 

a = ( h 2 / q E k v ) 1 i 3  

and substitution of this into (A7) gives 

By now using the limit (Abramowitz and  Stegun 1965) 

lim j , (  U + AvI i3 )  = (2/ v)Ii3Ai( -2113A) + O( v - I )  
Y - z  
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the equation (A8) leads finally to the EMA limit (Al) ,  with the natural identifications 
Vu2 = h 2 / 2 m ,  and Ca2 = h2/2m2.  Mutatis mutandis, one can also obtain analogous 
relationships for the even spectrum, leading to (Al)  too. 

Finally, it is straightforward to show that the appropriate EMA limit for M : ,  namely, 
M :  = m,  + m2, may be obtained from (A3) by using the logarithmic representation for 
sinh-’ t .  After a change of variables and some manipulations, one obtains from (A3), 
that 

h2( v+ C ) I  
lim M :  = = m , + m 2  
a-0 2 V C ~ ’  

since 

I = loa dyKo(y) e-y = 1. 
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